國立成功大學電機工程學系 教師個人頁面
English Version
高國興 教授
地址
啟端館3樓96308室
Email
TEL
06-2757575 ext.62419
實驗室網站連結
KLAB
(R96305/ext.62400-3205)
學經歷
學歷
2013
PhD, Electrical Engineering, KULeuven, Belgium
2008
MS, Electrophysics, National Chiao Tung University, Taiwan
2005
BS, Physics, National Chung Hsing University, Taiwan
經歷
2014~now
Faculty Member, Department of Electrical Engineering, National Cheng Kung University, Taiwan
2024~now
Project Manager at tsmc
2019~2024
Visiting Scholar, imec/KULeuven, Belgium
2009-2013
PhD researcher, Inter-university Microelectronic Centre (imec), Belgium
研究領域
  • Semiconductor Physics and Devices
著作
期刊論文( Journal )
more
less
  1. “Comprehensive Analysis of Pulse Voltage Stress Effects on Electrical Degradation in Junctionless Ferroelectric Thin-Film Transistors”, IEEE Trans. Electron Devices, accepted.
  2. “Yttrium Doped Hf0.5Zr0.5O2 Based Ferroelectric Capacitor Exhibiting Fatigue Free (> 1012 cycles), Long Retention, and Imprint Immune Performance at 4 K”, IEEE Electron Device Lett., 46, 1095, 2025.
  3. “Statistic Analysis of Spurious Dot Formation in SiMOS Single Electron Transistors”, Phys. Rev. B., 111, 125301, 2025.
  4. “High-Performance Junctionless Ferroelectric Thin-Film Transistor for Low-Voltage and High-Speed Non-Volatile Memory Applications”, IEEE Trans. Electron Devices, 72, 247, 2025.
  5. “Numerical Simulations of Gate-Granularity-Induced Subthreshold Characteristics Deterioration of MOSFETs Magnified at Cryogenic Temperatures”, IEEE Access, 12, 169748, 2024.
  6. “Extracting Device Parameters of TFTs with Ultrathin Channels at Low Temperatures by Particle Swarm Optimization”, IEEE Trans. Electron Devices, 71, 4717, 2024.
  7. “Study of endurance performance of SiO2 interfacial layer scaling through O scavenging in Si Channel n-FeFET with Si:HfO2 ferroelectric layer”, IEEE Trans. Electron Devices, accepted, 2024.
  8. “Device Simulations with A U-Net Model Predicting Physical Quantities in Two-Dimensional Landscapes”, Sci. Rep., 13, 731, 2023.
  9. “First Demonstration of Heterogeneous IGZO/Si CFET Monolithic 3-D Integration With Dual Work Function Gate for Ultralow-Power SRAM and RF Applications”, IEEE Trans. Electron Devices, 69, 2101, 2022.
  10. “Linking Room- and Low-Temperature Electrical Performance of MOS Gate Stacks for Cryogenic Applications”, IEEE Electron Device Lett., 43, 674, 2022.
  11. “First demonstration of ferroelectric tunnel thin-film transistor non-volatile memory with polycrystalline-silicon channel and HfZrOx gate dielectric”, IEEE Trans. Electron Devices, 69, 11, 6072, 2022.
  12. “Inherent Dipole Layer Formation Driven by Surface Energy at Nonplanar Dielectric Interfaces”, IEEE Trans. Electron Devices, 68, 294, 2021.
  13. "Subthreshold Swing Saturation of Nanoscale MOSFETs Due to Source-to-Drain Tunneling at Cryogenic Temperatures”, IEEE Electron Device Lett., 41, 1296, 2020.
  14. “Fabrication of Vertically Stacked Nanosheet Junctionless Filed-Effect Transistors and Applications for the CMOS and CFET Inverters”, IEEE Trans. Electron Devices, 67, 3504, 2020.
會議論文( Conference )
more
less
  1. “Innovative Nb Electrode Engineering for Ultra-Low-Voltage (Vop = 0.8 V) Ferroelectric Memory with Record-High Energy Efficiency: Applications in Selector-Free FeRAM and Neuromorphic Computing”, VLSI Tech. Dig., T11-3, 2025.
  2. “Insight into Latchup Risk in 28nm Planar Bulk Technology for Quantum Computing Applications”, IEEE IRPS, 8C.1, 2024.
  3. “First Demonstration of Defect Elimination for Cryogenic Ge FinFET CMOS Inverter Showing Steep Subthreshold Slope by Using Ge-on-Insulator Structure”, IEEE IEDM Tech. Dig., 2-6, 2023.
  4. “MOSFET Characterization with Reduced Supply Voltage at Low Temperatures for Power Efficiency Maximization”, IEEE ESSDERC, 9, 2023.
  5. “How Fault-Tolerant Quantum Computing Benefits from Cryo-CMOS Technology”, VLSI Tech. Dig., T13-3, 2023.
  6. “First Demonstration of Heterogeneous L-shaped Field Effect Transistor (LFET) for Angstrom Technology Nodes”, IEEE IEDM Tech. Dig., 20.2.1, 2022.
  7. “Integration Design and Process of 3-D Heterogeneous 6T SRAM with Double Layer Transferred Ge/2Si CFET and IGZO Pass Gates for 42% Reduced Cell Size”, IEEE IEDM Tech. Dig., 20.5.1, 2022.
  8. “First Demonstration of Vertical Stacked Hetero-Oriented n-Ge (111)/p-Ge (100) CFET toward Mobility Balance Engineering”, VLSI Tech. Dig., 399, 2022.
  9. “First Demonstration of Heterogeneous IGZO/Si CFET Monolithic 3D Integration with Dual Workfunction Gate for Ultra Low-power SRAM and RF Applications”, IEEE IEDM Tech. Dig., 34.4.1, 2021.
  10. “3D Integration of Vertical-Stacking of MoS2 and Si CMOS Featuring Embedded 2T1R Configuration Demonstrated on Full Wafers”, IEEE IEDM Tech. Dig., 12.2.1, 2020.
  11. “First Demonstration of Heterogeneous Complementary FETs Utilizing Low-Temperature (200 oC) Hetero-Layers Bonding Technique (LT-HBT)”, IEEE IEDM Tech. Dig., 15.5.1, 2020.
  12. “Process and Structure Considerations for the Post FinFET Era”, IEEE SNW, 3.1, 13, 2020.
專利
more
less
  1. Line-tunneling tunnel field-effect transistor (tfet) and manufacturing method. United States patent, No. 7460550, Dec. 2008
  2. A. S. Verhulst and K.-H. Kao, 2012, "Line-tunneling tunnel field-effect transistor (tfet) and manufacturing method" USA Patent No. 20120298959 A1
  3. “A probe device for interfacing with cells such as neurons and associated devices, methods, and use”, WIPO (PCT), WO2024013032A1, 2024.
其他
more
less
研究計劃
  1. (2024-2028) Extending Silicon Era by Superconductivity, Lighting and Anisotropy for Quantum Technology.
  2. (2023-2025) Si Superconductivity Experimental Demonstration and Ab Initio Calculation.
  3. (2022-2023) Core Cryogenic Devices for High-Performance Computing and Quantum Computing.
  4. (2018-2023) Futuristic Quantum Electronics and Artificial Intelligent Applications for Semiconductor Industry: Machine-Learning-Based Quantum Transport Modeling and CMOS-Compatible Device Fabrication.
  5. (2017-2019) Dopantless FETs: NEGF Simulation and Experiment.
  6. (2016-2017) Depletion Mode Quantum Well FETs: Simulation and Experiment.
  7. (2015-2016) Quantum Electronic Devices with Shell Doping Profiles (Depth < 5 nm and Steepness ~ 0.7 nm/dec) for Energy-Efficient Applications.
  8. (2014-2015) Modeling and Simulation of Strained GeSn Tunnel Field Effect Transistors.
開授課程
103學年度下學期
105學年度上學期
106學年度上學期
107學年度上學期
指導學生
本學年度 實驗室成員
博士班
Ankit Agarwal
Aditya Sharma
碩士班
數名
已畢業學生
特殊榮譽
  1. 2024中國電機工程學會傑出電機工程教授獎
  2. 2022中華民國十大傑出青年(科學及技術研究發展類)
  3. 2022 IEEE Tainan Section Best Young Professional Member Award
  4. 2021 李國鼎研究獎
  5. 2021 NARLabs Excellent Technical Achievement Award
  6. 2021 NARLabs-研發服務平台亮點成果獎
  7. 2020台灣電子材料與元件協會-傑出青年獎
  8. 2019 NARLabs Excellent Technical Achievement Award
  9. 2019吳大猷獎(微電子學門)
  10. 2018 MOST Young Scholar Fellowship
  11. 2017 TSIA Award for Young Researcher with Doctoral Degree
  12. 2015 NARLabs Superior Technical Achievement Award
  13. 2014 IEEE Tainan Section Best Ph.D. Thesis Award